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Massachusetts 02139, USA 

Received 13 February 1989, in final form 22 May 1989 

Abstract. We consider here a tight-binding model for the motion of a single electron and an 
energetically disordered lattice. We show that the Anderson transition in this model can be 
studied using a generalised master equation with a nearest-neighbour memory function. It 
is first demonstrated that because the generalised master equation with a nearest-neighbour 
memory function is isomorphic to a classical bond-percolation problem, an exact expansion 
can be constructed for the diffusion constant using the bond flux method of Kundu, Parris 
and Phillips. We show that at the effective medium level, the diffusion constant vanishes for 
any non-zero value of the disorder. We then calculate the probability distribution of the self- 
energy for the bond flux Green function on a Cayley tree of connectivity K. Our approach 
predicts an Anderson transition at W/V = 13 for K = 2 and W/V = 20 for K = 3. W is the 
width of the distribution for the site energies and V ,  the nearest-neighbour matrix element. 
These results are in good agreement with the exact values of W/V = 17 ( K  = 2) and 
W/V = 29 ( K  = 3). Further applications of the generalised master equation to disordered 
systems and the prospect of constructing the exact memory function for Anderson local- 
isation are discussed. 

1. Introduction 

We consider here the transport of a single electron on an energetically-disordered lattice. 
We treat this system in the tight binding approximation in which one orbital and a single 
random site energy are assigned to each lattice site. A constant nearest-neighbour matrix 
element, V ,  mediates transport among the lattice sites. It was originally shown by 
Anderson [l] that for a uniform distribution of site energies of width W, delocalised 
(current carrying) electronic states fail to occur when WIVexceeds a critical value [l]. 
In this work, we study the localisation-delocalisation transition in the Anderson model 
using a generalised master equation (GME) [2-71 with an approximate memory function. 
While the GME has been used extensively [3-51 as a tool for bridging the gap between 
coherent and incoherent motion in ordered systems, few applications of the GME to 
quantum transport in disordered systems exist [ 7 ] .  In fact, the present study represents 
the first application of the GME to the Anderson transition. 

Because of the relevance of the Anderson transition to insulator-metal transitions 
and the residual resistivity in metals, much effort has been expended in an attempt to 
form a clear understanding of this model [8-191. For example, the early work of Thouless 
t Permanent address: Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India. 
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[9,10], Wegner 1111, the subsequent work of Abrahams and co-workers and MacKinnon 
and Kramer [ 121 led to the scaling theory of Anderson localisation. 'This work established 
that the metal-insulator transition is a continuous function of the energy in three 
dimensions and that all states are localised for finite disorder in one and two dimensions. 
Subsequent analyses by Vollhardt and Wolfle (vw) showed that the results of scaling 
theory can be reproduced by a self-consistent diagrammatic expansion of the density 
response function for a system of independent particles moving in a random potential 
[13]. The basic principle underlying the work of vw [13] is that the coherent back- 
scattering which leads to Anderson localisation can be described by some type of average 
density relaxation kernel or memory function. Recently, Loring and Mukarnel [ 191 have 
attempted to implement the basic idea of the VW work. They start with a stochastic 
equation of motion for the density matrix. The stochastic term in their equations 
corresponds to a constant site off-diagonal dephasing process. For equation of motion 
methods see [ 181. However, Parris and Phillips [20] have recently proved that a constant 
site off-diagonal dephasing process will always thwart quantum localisation at long 
durations. 

in this work we study the Anderson transition using a memory function approach. 
The starting point for our analysis is a generalised master equation for the site occupation 
probabilities. The central quantity in any GME [2-71 is the memory function which in this 
case describes the interaction of the electron with the disordered environment. In our 
analysis we employ a nearest-neighbour approximation [2] to the exact memory function 
for a tight-binding Hamiltonian. The question on which we focus is as follows: can a GME 
with a nearest-neighbour memory function for a tight-binding Hamiltonian describe 
Anderson localisation? As we shall see, on a Cayley tree the answer to this question is 
an unequivocal yes. Hence, this method appears to be a promising tool for studying 
localisation in other disordered systems. Two methods are employed to study the role 
of disorder. In the first, we capitalise on the isomorphism between the GME in the Laplace 
domain for a nearest-neighbour memory kernel and classical bond percolation. The 
bond flux transformations developed by Kundu, Parris, and Phillips [21] are then used 
to calculate the diffusion coefficient. The resultant diffusion coefficient is then studied 
at the level of the effective medium approximation. Within this approximation, it is 
shown that the diffusion constant vanishes in all spatial dimensions for any non-zero 
value of the disorder. 

In the second approach, we investigate the properties of the Green function for the 
probability fluxes. By examining the self energy of the flux Green function, we are able 
to determine whether the energy spectrum corresponds to a collection of stationary 
(localised) states or delocalised states. We show that the vanishing of the imaginary part 
of the self-energy that appears in the probability flux Green function is the signature of 
Anderson localisation. To facilitate an exact calculation of the self energy we specialise 
to a Cayley tree of connectivity K and compute the probability distribution of the self- 
energy. We show that for K = 1 all states are localised €or a flat distribution of site 
energies of width W. For K = 2 and 3 we show that the nearest-neighbour memory 
kernel predicts a localisation transition at W/V = 13 and 20, respectively. These results 
are in excellent agreement with the exact results of W/V = 17 ( K  = 2) and W/V = 29 
( K  = 3) predicted by the method of Abou-Chacra, Anderson and Thouless (AAT) [8]. 

in  the next section we discuss the validity of the GME for Anderson localisation. A 
derivation of the equations of motion is also given for a nearest-neighbour memory 
function. The diffusion constant is calculated in § 3 and in § 4 the self-energy calculations 
for the site-return Green function are presented and the existence of a localisation 
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transition on the Cayley tree is demonstrated. We close with a general discussion of the 
prospects for constructing a self-consistent equation for the memory function. 

2. Equations of motion 

The Hamiltonian describing our system is 

where E, are the random site energies and V,, the matrix element connecting sites n and 
m. V,, is zero unless sites n and m are nearest neighbours. The operator a,’ (a,, ) creates 
(destroys) an electron at site n. A standard [l, 8, 171 way of studying the dynamics 
determined by (2.1) is the Heisenberg equation of motion 

id, = &,a, + 2 Vnmam 
m 

for the operators a,. An obvious alternative to (2.2) is of course the Liouville equation 
of motion 

for the density matrix p.  Equation (2.3) provides a direct route to the dynamics because 
any transport property can be computed once the site probabilities or equivalently the 
site diagonal elements (p,,) of the density matrix are known. However, calculation of 
the pnn values directly from (2.3) is problematic because (2.3) involves both diagonal 
and off-diagonal elements of the density matrix. Zwanzig [2] and others [3,4] have 
shown how to construct a closed equation of motion involving only the site probabilities 
and an appropriate memory function. For a localised initial condition [2,3], the appro- 
priate equation for the time evolution of the site probabilities (P,(t)) is the generalised 
master equation (GME) 

P ,  = [Wmn(t - t’)P,(t’) - Wnm(t - t’)P,(t’)] dt‘. (2.4) i,’ m 

In equation (2.4) Wnm(t - t ’ )  is the memory function responsible for transport between 
sites n and m. The Markovian approximation to the memory function in (2.4) cor- 
responds to a memory that is a delta function in time, W,,,J(t - t’ ). In this limit equation 
(2.4) reduces to the standard master equation 

which describes incoherent transport and W,, is the rate of transport between sites n 
and m. 

We emphasise that equation (2.4) is a fully quantum mechanical exact equation. In 
this respect, then, it is different in kind from the GME derived by Klafter and Silbey [6] 
in the context of incoherent or master equation dynamics. The memory function that 
appears in the Klafter-Silbey work arises when projection operators are introduced to 
average over the disorder [6]. 

In an ordered infinite one-dimensional system with nearest-neighbour matrix 
elements V,, = V ,  and E, = E, for all n f m, the exact memory function [3] 

I d  
t d t  Wmn(t) = ---J;_,(2Vt) 

connects every pair of sites. To lowest order in V2,  the exact memory function, equation 
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(2.6), reduces to Wnm+ 2V2 6n,m+l which connects nearest neighbours only. It is well 
known that this approximate memory function is sufficient to generate the exact mean- 
square displacement 2Vt2  for an ordered system even though the nearest-neighbour 
approximation may result in negative site probabilities [3,4]. The result for the mean- 
square displacement is easily established because in an ordered system with a nearest- 
neighbour memory function, the diffusion coefficient is simply the time integral of the 
memory function [3]. As a result simple rules can be formulated that relate the long time 
dependence behaviour of the memory function to the asymptotic properties of the 
diffusion constant [3]. For example, in an ordered system with a nearest-neighbour 
memory function, a purely oscillatory (in time) memory will result in localisation. On 
the other hand, diffusion or incoherent transport obtains if the memory function decays 
to zero at long times. 

For disordered systems the memory function is considerably more complicated. We 
propose here to study the Anderson transition with the nearest-neighbour approxi- 
mation to the memory for (2.1). Using the procedure outlined by Zwanzig [2], it is 
straightforward to show that 

is the nearest-neighbour approximation to the memory function for equation (2.1). For 
a one-dimensional system then, the corresponding equation of motion for the site 
probabilities is 

F,,,?I(t) = 2v2  COS(&, - E,il)t (2.9) 

k ( t )  = 2V2(jj:COS[(E, - En+l)(t - t ’ ) I (Pn+l( t f )  - P,(t’)) 

+ i,’ COS[(&, - ~ ~ - ~ ) ( t - c ‘ ) ] ( P ~ - ~ ( t ’ )  -P , ( t ’ ) ) )  dt’. (2.10) 

It should be clear from (2.10) that because the memory function changes from site to 
site, the diffusion constant is no longer simply related to the time integral of the memory 
function. Consequently, the simple rule that an oscillatory memory will give rise to 
localisation might not be valid. The memory function (2.9) is well known to predict [3] 
localisation rather than coherent transport when the site energies alternate (t A) along 
a chain or whenever any long-range periodicity is associated with the site energies. 
Clearly, the nearest-neighbour approximation to the memory function cannot account 
for any long-range periodicity and is consequently doomed to fail in such cases. Hence, 
whether the memory function (2.9) is adequate to describe a localisation-delocalisation 
transition in a disordered system is an open question. We now turn to the answer to this 
question. In the next section we show how to construct an exact expansion for the 
diffusion constant for equation (2.10) and its &dimensional analogue. The expansion is 
then analysed in the effective medium approximation. 

3. Diffusion coefficient 

3.1. One dimension 

To formulate the diffusion coefficient for the model defined in (2.9), it is expedient to 
consider the Laplace transformed equations of motion. Let us define the quantities 

and 

where s = ~ / u 2 V ,  E the Laplace transform variable conjugate to time. Noting that Fm(s) 

A m  = ( E m  + 1 - cm ) / v 2 v  

Fm(s )  = s/(s2 + A i )  

(3.1) 

(3.2) 
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is the Laplace transform of the memory function (2.9), we rewrite the equations of 
motion as 

sPn(s) - Pn(t= 0) = Fn(s)(Pn+,(s) - Pn(s) )  + Fn-1(s)(Pn-l(s)  - Pn(s>)* (3.3) 
We point out that in the Laplace domain, the master equation for nearest-neighbour 
transport 

sPn (s) - Pn ( t  = 0) = Wn (Pn + 1 - Pn (SI) - Wn - 1 (Pn - 1 - P n  ($1) (3.4) 
closely resembles the Laplace transformed nearest-neighbour GME. The only difference 
between (3.4) and (3.3) is that the hopping rates Fn(s) in (3.3) are frequency dependent, 
whereas in (3.4) the Wnvalues are static. We now show that the similarity between (3.3) 
and (3.4) can be exploited to construct an expansion for the diffusion constant for (3.3). 

We proceed by introducing the flux or probability current 

J n ( s )  = Fn-l(s)(Pn(s)  - Pn- l ( s ) )  (3.5) 
between sites n and n - 1. For classical bond-disordered systems, Kundu, Parris and 
Phillips [21] (KPP) have shown that (3.5) provides a direct route to the diffusion constant. 
Because (3.3) is of the bond-disordered form, the same techniques apply here as well. 
Only one change is necessary, namely Wn+ Fn(s). Hence, we will be brief but self- 
contained in our presentation. We first rewrite equation (3.3) in a more transparent 
form 

For the localised initial condition Pn(0) = 

sP,(s) - P,(t = 0)  = J n + l ( s )  - J,(s) .  (3.6) 

n n n 

or equivalently 

(3.7) 

The angle brackets in (3.8) signify an average over the distribution of site energies and 
I the lattice spacing. Equation (3.8) suggests that once the probability current generating 
function 

F(q,  s) = E eiqnJn(s) (3.9) 
n 

is known, the diffusion constant can be constructed because [21] 

(3.10) 

As in the classical problem [21], an integral equation can be constructed for F(q,  s) by 
subtracting the equations of motion for Pn(s) and Pn - 1, multiplying through by e@ and 
summing over n. The result is 

2(1 - cos q)F(q,  s) + (1 - eiq). J n  

n Fn 
s e i q n  - = - 

The final expression for the integral equation 
F(q,  s) = (1 - eiq)>/[s2 + c(s) + 2(1 - cos q)]  

(3.11) 

(3.12) 
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is obtained by expanding about a uniform system with a frequency-dependent nearest- 
neighbour energy difference c(s) and recalling that J,, is the inverse Fourier transform 
of F(q,  s). In (3.12) the fluctuation 6(Ak)  = A% - c(s). 

Equation (3.12) can be solved by successive iteration. For example, the nth term in 
the iteration will contain n factors of the site energy fluctuation 6 ( A i ) .  In the classical 
one-dimensional problem [21], however, the hopping rate fluctuation 6( W;' ) waspaired 
with a factor of the frequency, s. As a consequence, the nth term in the iteration of the 
integral equation was of the form S" x (n factors of 6(l/Wm)). In the limit of small 
frequencies (s + 0, the long-time limit) the resultant expansion for the diffusion constant 
was convergent and yielded the exact long-time behaviour. As is clear from (3.12), such 
is not the case here. The fluctuation 6 ( A i )  is not paired with a factor of s. This has two 
consequences. First, the magnitude of successively higher order fluctuation terms is not 
necessarily decreasing. Consequently, the expansion determined by (3.12) might not be 
convergent. Second, there are an infinite number of terms that contribute to the DC 
conductivity and each successive frequency correction to the diffusion constant. 

While neither of these problems can be circumvented entirely, it is possible to 
construct a slightly more convergent form of (3.12). We proceed by rewriting (3.12) so 
that certain classes of higher-order terms are summed exactly. For example, all terms 
involving repeated scattering from the same site can be resummed by introducing the 
single site t-matrix [22,23] 

where 

1 "  1 "  
go(s) = 1 dq[s2 + c(s) + 2(1 - cos 4)I-l = - 1 d q ,  dq.  

- ,n 2n 
-n 

(3.13) 

(3.14) 

To obtain the diffusion coefficient, we note that ( F ( q ,  s)) is diagonal in q space. Hence 
( F ( q ,  s ) ) [ , = ~  = 0 as a result of the (1 - eiq) factor that multiplies each term in the 
expansion. The only non-zero contribution to D(s), then, must arise from the second 
term in (3.10) when the q derivative acts on (1 - e'". Let us define 

nqq' = [ d q ' ,  s) - go(s>l6(4 - 4 ' ) .  (3.15) 

The matrix n will act as the propagator in the t-matrix expansion of the diffusion constant. 
From (3.10)-(3.14) it follows that [21,22] 

D(s)G(q') = s12 lim [ g ( q ,  s) + g(t)g + g(tnt)g + . . . I q , , ,  (3.16) 
4-* 0 

is the t-matrix expansion for the diffusion coefficient. We point out that (3.16) might still 
not be a convergent expansion. However, (3.16) sums up many more terms order by 
order than does (3.12). 

Consider the first two terms 

S l 2  

s2 + c(s) il + s2 + c(s) 
D(s) = (3.17) 

in (3.16). If we choose as the uniform system c(s) = ( A i )  = (A2) we see that the first 
term is (1/FJ1Z2 = 12s/(s2 + (A2)). In the incoherent bond problem in one dimension, 
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l2(1/Wn)-l is the exact zero-frequency diffusion coefficient [21]. We see in the quantum 
mechanical case that (l/F,,)-l is just the leading term in an infinite series. It is clear 
however that ( 1/Fn)-I vanishes ass + 0 for any non-zero value ((A2) # 0) of the disorder 
and diverges (for s+ 0) when (A2) = 0. This result is consistent with an absence of 
diffusion in one-dimensional systems for any non-zero value of the disorder. 

Equation (3.17) can also be used to construct an effective medium approximation 
(EMA) for the diffusion constant. In the EMA, the uniform system c(s) is chosen so that 
( t )  = 0. When (t) = 0, Do = s12/(s2 + c(s)) will be the exact diffusion constant through 
second order in the t-matrix expansion. If for all values of the disorder c(s) = co (a 
constant) as s + 0, Do will vanish; that is, the electron will be localised. We solve the 
effective medium equation 

(3.18) 0) = ((A! - c(s>)/[l + go@: - c(s>)l) = 0 
or equivalently 

(1/P + go(A2 - c(s>)l) = 1 (3.19) 

in the case that the disorder is determined by the uniform distribution 

1/W -1/2W S A,, < 1/2W 

otherwise. 
p(An = { 

We find that 

(3.20) 

(3.21) 

Substitution of the integral go = [(s2 + c(s))(s2 + 4 + c(s))]-’/* into (3.21) leads to 

as the final self-consistent equation for co in the limit that s +. 0. Recall c(s) + co as 
s + 0. Equation (3.22) was solved numerically. We found that (3.22) always admits a 
non-zero solution for arbitrarily small values of the disorder, W. In particular the 
solutions to (3.22) have the following property. For small W, co CC W2 and for large W, 
co CC W. Hence, localisation obtains as it should in one-dimension and for any non-zero 
value of the disorder. We show in the Appendix that the argument presented here for a 
uniform distribution can be generalised to any distribution of site energies. 

3.2. Higher dimensions 

We now generalise the calculation of the diffusion coefficient presented in the previous 
section to d dimensions. Here again the d-dimensional t-matrix expansion for the 
diffusion coefficient developed in [22,23] in the context of incoherent transport in bond- 
disordered systems is the basis for our calculation. To proceed we write the GME 

t d  

P n  = 21’2 I, E [COS(&, - & n + a  )(t - t’)(pn+a(l’) - pn(t’)) 
a= 1 

+ COS(&, - ~, - , ) ( t  - t’)(Pn-a(t’) - P,(t’))] dt’ (3.23) 

in d dimensions for a nearest-neighbour memory kernel. In (3.23) n = (nI, n2 .  . . nd) is 
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a direct lattice vector and a is a unit vector pointing along the a direction from site n to 
its nearest-neighbour along that direction. Throughout this paper, we will use Greek 
superscripts to denote spatial components of a matrix. As before, it is instructive to 
rewrite the equations of motion in the Laplace domain 

sP,  - P ,  ( t  = 0 )  = E F,(P,+, - P,) + F,"-,(P,-, - P , )  (3.24) 

where F," = s/(s2 + Ai,, ,)  is the frequency-dependent hopping rate and A,,,  = 
( E , + ,  - ~ , ) / d 2 V  the dimensionless energy difference between sites n and n + a. Let 
us define the probability current or bond flux 

(3.25) 
between sites n and n - (Y along the a direction and the corresponding generating 
function 

d 

a= 1 

1: = FE- a (s>(Pn ($1 - Pn -a (SI) 

(3.26) 

Each of the flux generating functions is related to the frequency-dependent diffusion 
constant [21] 

(3.27) 

along the a direction in the crystal. We will consider here an isotropic distribution of 
site energies. In an isotropic system, D"" is independent of direction. Hence we will 
drop the subscript on the diffusion constant and set D(s)  = D""(s). 

We now construct a coupled set of integral equations for the Q E  terms. This can be 
done by Fourier transformation of the equations of motion 

a D""(s) = - (Q"(q = 0, s)) + 2i-(QN(q,s))19=0 
s12 2 i d4" 

d SI," J,"(O) 
- E J,"+, + J,"-, -U: 

F," F," 
(3.28) 

for the fluxes and expanding about a uniform system with frequency-dependent hopping 
rate (C"(S)>-~. The result 

(3.29) 
is most easily written in matrix form. In (3.29), we have introduced the column vectors 
Q and j (0)  with components Q"(q, s) and [ l  - exp(iq,)], respectively. The matrices 2 
and Y are defined as follows 

(3.304 

[sc"((s) + 2 - Y]Q = j (0)  

Zt$ = [l - exp(iq,)][l - exp(-iqP)]6(q - 4 ' )  

Y g /  = s(c"(s) - l/F,"(s))6,,6, = Yg. 

and 

(3.30b) 
The remainder of our analysis will focus on the matrix G = [sc"(s) + 2 - VI-'. The form 
of this matrix in one dimension is given implicitly through equations (3.11) and (3.12). 
In one dimension, we showed that (G) is diagonal in q space. The same is true for the d 
dimensional case as noted by Parris [22]. Consequently, because the elements of j (0)  
vanish as q + 0, (Q"(q = 0, s)) = 0 and only the q derivative of the diagonal part of 

(3.31) 
(G)j(O) 

D = D,,(s) = sl2(G);,; I q = o  
is needed to define the diffusion coefficient. 
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Following 1221 for incoherent transport, we divide the Green operator into perturbed 
and unperturbed parts. We choose as the unperturbed system one in which the diffusion 
constant is c"(s). For an isotropic system cn(s) = E(s) and the unperturbed propagator is 
g = ( S E @ )  + 2)-' whose matrix elements are 

(3.32) 

A Dyson expansion 

(G) = g + (gYG) = g + g(Y)g + g(YgYg) + . . . (3.33) 
for the average Green function follows immediately. This expansion can be resummed 
by introducing the single site t matrix 122,231 

f;! = YZ(1 - go"Y;)-' (3.34) 
and an effective propagator JC;$ = g;: - gffS,S(q - 4'). The d-dimensional form of 
the self-propagator is 

d 
d - 1  

SE + 2(1 - cos 4,) 
1 

g$(s) = - 1 d q  dq'g;: = - 
(2J-w 

Substitution of (3.34) into (3.33) leads to the desired expansion 
D ( S )  = ~ " " ( s )  = sZ2 lim [g + g(t)g + g(tnt?g + . . .It:, (3.36) 

q-0 

for the diffusion constant. 
Equation (3.36) can be used to formulate an expression for D(s )  valid through 

arbitrary order in the t matrix. For the present analysis, we focus on the first two terms 
in (3.36). As q-, 0, g+  (sE(s))-' and 

s12 ( t? 
sc(s) sc(s) 

D(s)  - - [ 1 + -1. (3.37) 

For the nearest-neighbour memory kernel in which FE = s/(s2 + A:,,), the frequency- 
dependent hopping rate E @ - '  is of the form E(s) = ( s2  + b(s))/s.  Here b(s)  is the site 
energy difference in the uniform system. If we choose b(s) to be (A'), then the first term 
in (3.37) is exactly (l/Ff)-'. As remarked previously, this term vanishes for all non-zero 
values of the disorder ( (A2> # 0). Hence, the first term in (3.37) always predicts local- 
isation whenever the disorder is non-zero irrespective of the spatial dimension. 

To improve on this calculation, we derive a self-consistent equation for t ( s )  at the 
effective medium level. We must solve, then, the d-dimensional analogue of equation 
(3.18). Ass+ 0, the integral (Kundu and Phillips [21]) in gg(s) is negligible relative to 
the first term. If we let lim E(s)/d+ R-' , the self-consistency condition becomes 

S' 0 

(3.38) 

with the s = 0 limit of the Laplace transform of the memory function. The vanishing 
of R is the signature of localisation. The properties of (3.38) are best illuminated by 
rewriting (3.38) 

(3.39) 

in terms of the site energy distribution function p(A). For the nearest-neighbour memory 
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function (2.9), F(A) is lim,,o s/(s2 + A') = ~r.-'tj(A). Because F(A) only contributes 
at A = 0 and p ( A )  is normalised, the self-consistency condition implies that 
R = ( d  - 1 ) R / d  or R = 0. Hence, the EMA also predicts a vanishing of the diffusion 
constant regardless of the spatial dimension and the magnitude of the disorder. We 
remind the reader that because we have truncated the memory function to order V 2 ,  the 
effective medium developed here is based on an expansion for the average probability 
from the localised side. This is in stark contrast to the standard coherent potential 
approximation, which introduces an effective medium for the average amplitude 
[24,25]. Consequently, the exact behaviour of the diffusion constant in our model is still 
an open question, because of the approximate nature of the analysis presented thus far. 
Our subsequent exact analysis of the flux self-energy on a Cayley tree in 0 4 strongly 
suggests, however, that the nearest-neighbour memory approximation is sufficient to 
describe Anderson localisation. As a consequence, the higher order terms in (3.36) 
should certainly be investigated to see if they lead to a localisation-delocalisation 
transition in d = 3. 

Although the EMA fails to describe the Anderson transition in d = 3, it is worth 
exploring just what type of transition, if any, the EMA in this model predicts. The integral 
in (3.39) is finite at R = 0 only if p( A)/F( A) is a bounded function as A -+ CO. The quantity 
p(A)/F(A) can be thought of as the ratio of distributions. p(A)/F(A) will diverge as 
A +. if the width of the distribution p ( A )  is wider than that for F(A). Should this state 
of affairs obtain, equation (3.39) will predict a localisation-delocalisation transition. 
Consider the case in which F(A)  is non-zero only over a finite interval [-Ama,, A,,,]. 
Under such circumstances, (3.39) can be rewritten as 

(3.40) 

where (1 - P )  is the probability that p ( A )  is defined outside the interval [-Am,,, Am,,]. 
As a consequence, the self-consistent condition is 

d - 1  
d ( l  - P )  

l =  (3.41) 

which implies that P, = l / d .  We see then that the EMA (3.39) is capable of predicting the 
EMA for classical percolation [24] transitions (Pc = l/d) only. Such transitions come 
about from purely incoherent or decaying (in time) memory function. At the EMA level, 
transport thresholds are determined by the incoherent rather than the coherent part of 
the memory function. This certainly clarified why the EMA in this model fails for the 
Anderson transition. 

4. Anderson transition 

We now show that the GME with a nearest-neighbour memory kernel can lead to an 
Anderson transition on a Cayley tree of connectivity K. The quantity on which we focus 
is the energy spectrum of the Green function for the bond fluxes. In the frequency 
domain, the singularities of the Green function determine the energy spectrum. If all 
the singularities are real simple poles, then the Green function describes a stationary 
system in which no transport obtains. Singularities with non-zero imaginary parts indi- 
cate the presence of branch points. This signifies the existence of delocalised states. 
Though the calculation of the energy spectrum [8,17,25] is typically performed with the 
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Green function for the ampitudes, the Green function for the fluxes and site probabilities, 
as we will see. suffice just as well to establish the existence of branch points. 

To proceed, consider the equations of motion for the bond fluxes 
d 

SJ," J , " ( t=  0 )  
F," F," CY= 1 

= -2.l; + I,",, +I,"-,. 

The longtime properties of our system are determined along the axis Re@) = 0 or the 
Im(s) axis. If all the states are localised, then the probability of remaining at the initial 
site (the origin) is either unity for all times or recurs to unity with a non-infinite recurrence 
time. For this state of affairs to obtain, all the singularities of the probability Green 
function must correspond to simple poles which lie along the Im(s) axis. From equations 
(3.24) and (4.1) it follows that the probability Green function G, and the Green function 
for the flux at the origin GI are related through 

- G,"(O, 0 + a; S )  - G,"(O + a, 0; s)] 

G,"(n + a, n + a; s )  = [s2 + Ai,@ + 2 - rCY(n + a; s)]-' 

(4.2) 

(4.3) 

where 

is the single-point Green function for the flux site n + a. In (4.3) rCY(n + a; s) is the self- 
energy along the LY direction for the flux between sites n and n + a. It is evident from 
(4.3) and (4.2) that except at s = 0, the singularities of the probability Green function 
GF(0,O; s) cannot be simple poles along the Im(s) axis unless Im r"(0 + a; s )  and 
Im re( 0; s) are both identically zero with probability unity. If we require that the 
probability distributions of Im r"(0 + a; s) and Im "0;  s) be identical, then 
Im Ta(O + a; s) = Onecessarilyimpliesthat Im r"(0 - a; s) = Oaswell. Hence,weneed 
only focus on the probability distribution of either Im Ta(O; s) to analyse the Anderson 
transition. 

4.1. Self-energy for K = 1 

At this point we specialise to a Cayley tree facility an exact calculation of the Green 
function 

GI(O; s) = (s2 + A i  + 2 - r(0; s))-' 

for the flux in the bond at the origin. We have dropped the superscript on G,(O; s) and 
r(0; s) because directionality is not defined on a Cayley tree. By way of illustration, 
consider first the K = 1 lattice. We number the sites according to figure l(a). The self- 
energy r(0; s) is computed by summing over all closed skeleton paths that return to the 
origin [25]. Clearly there are only two such paths: 0 -+ 1 -+ 0 and 0-+ -1 -+ 0. The 
resultant self-energy at the origin 

r(o; S) = r(o, o(1)) + r(0, o(-1)) (4.5~) 

(4.5b) 

can be written as the sum of two self-energies r ( O , O (  1)) and r(O,O( - 1)). These quanti- 

= [ s 2  + 2 + A?, - r ( - l ,  -l(O))]-' + [s2 + 2 + A: - r (1 ,  l(O))]- '  
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tal 

.------ 

-2 -1 0 1  2 

y4; 
b% 

Figure 1. (a) The tight binding model in one dimension. The sites are labelled with integers, 
and the interactions between the sites are nearest-neighbour only, as indicated by the 
connecting bonds. ( b )  The Cayley tree of connectivity K = 2. Each site probability P, is 
connected to three nearest-neighbours. The directional arrows are superimposed on the 
bonds to assist in the construction of the equations for the flux. With the flux between any 
two sites defined, as in (4.7), as .TmJS) = F,,,(s)(P,(s) - P,(s)), where m and n are taken 
in the order specified by the direction of the arrows, the equations for the evolution of the 
fluxes take on the simple form shown in (4.9), in which the terms on the right-hand side of 
the equation are all negative. 

ties exclude all paths that visit sites 1 and - 1, respectively. In general r (n ,  n(m, 1, . . .)) 
is the self-energy at site n which excludes all paths that visit sites (m,  I ,  . . .). Self- 
consistency is introduced by requiring that the probability distribution for r(O,O( l)), 
r(0, 0(-1)), r ( - l ,  -1(O)) and r(l, l(0)) be equal [8]. This self-consistency condition 
is justified because the probability distribution for a self energy of the form r(n,n(m)) 
should be independent of n and m. Now the signature of Anderson localisation is the 
vanishing of Im r(0; s). Equation (4.5a) implies that for Im r(0; s) = 0, Im r(O,O(l)) 
and Im r(O,O(-l)) must both vanish. However, because r(O,O(l)) and r(O,O( -1)) 
obey the same probability distribution, Im r(O,O(l)) = 0 necessarily implies that 
Im r(0, 0(-I)) = 0 as well. Hence, the question of localisation can be answered in one 
dimension by investigating the properties of either r(O,O(l)) or r(O, 0(-1)). 

Consider then the defining equation 

r(o, o(-I)) = [s2 + 2 + A: - r(i, i(o))]-l 

for r(O,O( -1)). We employed the Monte Carlo procedure of AAT [8] to solve equation 
(4.6) for the probability distribution of Im r(0, 0(-1)). A flat distribution of 1000 
members was used to generate random values for the site energies and r(1,  l(0)). The 
Im r(O,O(-l)) was computed with s = iu and U chosen so that the mean of 
Im r(O,O(-l)) was maximised. The choise of U (s = iu) such that Im r(O,O(-l)) is 
maximised guarantees that when Im r(O,O(-l)) vanishes, all the fluxes are localised. 
We found that Im r(0, 0(-1)) vanished for all values of W/V and for all values of U 
(even for infinitesimally small values of W/V).  Hence, the nearest-neighbour memory 
function corroborates the well known result [ 12-15] in d = 1 that all states are localised 
in the presence of disorder. 
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I b )  

Figure 2. (a) The structure of equation (4.9) for the fluxes in the Cayley tree of connectivity 
K = 2 is that of an expanded cactus of triangles in which each flux Jm,n is represented by a 
‘flux-site’ in the cactus, and is connected to four neighbouring fluxes. The expanded cactus 
can be generated via a bond-to-site transformation of the Cayley tree; the bonds in the 
Cayley tree become the sites in the expanded cactus. (b)  It is convenient to replace the 
double label J,,,, for each flux ‘site’ on the expanded cactus of (a) with a single integer. In 
order to calculate the self-energy r(0, 0(-1,-2)) on the expanded cactus, one must sum 
over all of the self-avoiding paths which exclude the ‘flux-sites’ - 1 and -2. There are three 
suchpaths,O+ 1+0 ,0+2+OandO+ 1+2+O,Thesepathsaredecoratedwithpaths 
over sites 3.4, 5 ,  and 6, etc. The entire left side of the figure is avoided for this calculation, 
as represented by the broken lines. Similarly, when calculating r(O,O(l, 2)), the entire right 
side of the figure is avoided, i.e. none of the sites labelled by the positive integers are visited. 

4.2.  Self-energy for K = 2, 3 

The calculation for Cayley trees of higher connectivity is considerably more complicated. 
Consider the K = 2 lattice shown in figure l(b).  The arrows indicate the direction in 
which the fluxes should be computed. Let us define the flux between sites n and m as 

Jn ,m  = F m , n  ( s ) (Pm(s)  - Pn (s>> (4.7) 
whereF,,,(s) = s/(s2 + Az,m)andA,,m = ( E ,  - ~ ~ ) / d 2 V .  Infigurel(b)anarrowpoint- 
ing from site n + m defines the fluxJ,,,. Using the numbering of the sites shown in figure 
l(b),  we see that the equation of motion in the Laplace domain for the probability to 
remain at the origin. 

sPo(s) - po(t = 0) = -J9,0 - Jl0,O - J1,O (4.8) 
involves only thesfluxes for the three nearest neighbours. In contrast, the equation of 
motion for the flux at the origin 
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is determined by the next-nearest neighbour fluxes as well. Equation (4.9) is the K = 2 
Cayley tree analogue of equation (4.1). It is clear from (4.9) that the flux equations do 
not map onto a simple Cayley tree of connectivity K. It is possible however, to construct 
a decorated Cayley tree on which the flux equations can be generated by summing over 
the nearest-neighbour sites only. The fiuxes correspond to free bonds in the Cayley tree, 
each connected to 2K nearest-neighbour bonds. If one transforms the Cayley tree so 
that the bonds are represented as points, the resulting structure is the expanded cactus 
shown in figure 2(a). 

On this lattice, the flux equations for a given site can be generated by summing over 
the vertices of the two triangles emanating from the flux site of interest. The form of the 
flux equations will always be that of equation (4.9), with the nearest-neighbour fluxes 
appearing with a minus sign. 

We must compute the self-energy by summing over all non-intersecting skeleton 
paths on the expanded cactus shown in figure 2(a). To simplify the notation, we drop 
the double subscript on the fluxes and number the sites according to figure 2(b). Here 
again the quantity of interest is the self-energy 

(4.10) 

at the origin. As in the one-dimensional case, we need only focus on one of the terms 
in (4.10). Consider r(O,O(-l, -2)). Three paths, O-, 1- 0, O-+ 2 4  0, and 
0 4 2 -+ 1 4  0, contribute to the self-energy 

r(O,O(-l, -2)) = [s2 + 2 + Ai  - r (1 ,  l(O))]- '  + [s2 + 2 + A: - r(2,2(O))]-l 

r(o, 0; S) = r(o, o(i ,2))  +- r(o, o(-1, -2)) 

- [s2 + 2 + A: - r(2,2(0))]-' [s2 + 2 + A: - r(1,1(2,0))]-'. (4.11) 

The self-energies that exclude one site can be expressed as 

r(i, q o ) )  = r ( i ,  3(2,0)) + [ s2  + 2 + A: - r (2 ,2(1,  o))]-1 (4.12) 

and 
r(2,2(0)) = r (2 ,2(1 ,0)  + [s2 + 2 + A! - r(i, i(2, o))]-l. (4.13) 

We can now express r(O,O(- 1, -2)) entirely in terms of self-energies that exclude the 
two sites 

r(0, o w ,  -2)) 

[s2 + 2 + A i  - r (2 ,2(  1,O)) ] + [s2 + 2 + A: - r( 1,1(2, O))] - 1 
- - . (4.14) 

Let us define r (n ,  n(m, 1 ) )  = TnR + iTnI and X, = s 2  + 2 + A i  - TnR for any site IZ and 
pair of sites (m, I ) .  The real and imaginary parts of r(O,O(- 1, -2)) can be expressed in 
terms of these quantities. For Im r(O,O(-l, -2)) we obtain 

ImT(O,O(-l, -2)) = roI 

[.y2 + 2 +  A: -r(2,2(1,0))] x [s2 + 2 + ~ :  - r ( i , i (2 ,0) ) ]  - 1 

The imaginary s(s = iu) axis was scanned, and it was found, as is evident from figure 3, 
that the maximum value of W/V needed to cause a transition was W/V = 13 at a value 
of U = 1.8. This result is in good agreement with the exact value of AAT of W/V = 1.7. 
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Figure 3. The geometric mean of the imaginary 
part of the self-energy r(O,O), as a function of the 
ratio of the full width of the disorder Wand the 
nearest-neighbour overlap integral V ,  for the 
Cayley tree of connectivity K = 2. The points 
shown represent the average of the last 20 of 100 
iterations of the self-consistent equation, with an 
ensemble of 500 members. The curves are A: the 
self-energy for the amplitudes, which is generated 
from the exact expressions of AAT [8] with U = 
0; B, the self-energy for the fluxes, which is gen- 
erated from (4.14), with u = 1.W. Curve A 
approaches zero at W / V =  17, while curve B 
approaches zero at W/V = 13. 

Figure 4. For the Cayley tree of connectivity 
K = 3, the corresponding expanding cactus for 
the fluxes is a network of tetrahedrons, such that 
each 'flux-site' is connected to six nearest-neigh- 
bours. Inorderto calculater(O,O(-l, -2, -3)), 
it is necessary to sum over nine self-avoiding paths 
which completely exclude the sites labelled by the 
negative integers. The excluded sites are shown 
connected by broken lines. Three of the self- 
avoiding paths are the single-edge routes O+ 
1 -+ 0, 0-  2 -+ 0, and O+ 3 -+ 0. Three others 
define the faces of the tetrahedron: O-, 1-+ 
2 + 0 ,  0-+1-+3-+0, and 0 -+3-+2-+0 .  The 
three remaining paths are 0-+ 1 -, 2+ 3 -t 0, 
O+ 2- t  3 -+ 1 0 and 0- t  3-t  1 -+ 2- 0.  

The discrepancy between the value of AAT and the GME results stems of course from the 
O(V2) or nearest-neighbour approximation we have made to the memory function. This 
approximation effectively decreases the magnitude of the nearest-neighbour matrix 
element, V.  Consequently. the electronic states become localized at a smaller value of 
the disorder W. As we will see the K = 3 results also follow this pattern. It is likely then 
that inclusion of higher order terms in the memory function should improve the estimate 
of the critical value of W/V. 

We now turn to the K = 3 calculation. For K = 3, the equations of motion for the 
flux at site n can be obtained by summing over all the six nearest-neighbour fluxes of site 
non the expanded cactus in figure 4. The lattice in figure 4 can be obtained by decorating 
each lattice site of a standard K = 3 Cayley tree with a tetrahedron. In analogy with the 
K = 2 calculation, the localisation-delocalisation transition can be studied from the self- 
energyT(0, 0(-1, -2, -3)). TheexpressionforT(O,O(-1, -2, -3)) iseasilyobtained 
by summing over the skeleton paths enumerated in the caption for figure 4. We solved 
the self-consistent equation for Im[T(O, O( - 1, -2, -3))] using the Monte Carlo method 
of AAT [8]. Our results are shown in figure 5 .  They indicate that the maximum value of 
Im I ' (O,O(- l ,  -2, -3)) which occurs at U = 2.0 vanishes for W/V -- 20 as opposed to 
the exact [8] value W/V = 29. Here again we obtain satisfactory agreement between the 
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Figure 5. The geometric mean of the imaginary 
part of the self-energy r(0,0) ,  as a function of the 
ratio of the full width of the disorder W a n d  the 

localisation of the GME with a nearest-neighbour memory kernel and that predicted by 
the exact amplitude equation. 

5. Final remarks 

We have demonstrated how a generalised master equation can be used to study Anderson 
localisation. At the effective medium level, the GME approach with a nearest-neighbour 
memory function fails to predict an Anderson transition on a cubic lattice for d = 
3. Only localised solutions exist to the effective medium equations regardless of the 
magnitude of the disorder. That only localised solutions exist for the effective medium 
equations is not unexpected because the perturbative t-matrix expansion for the diffusion 
constant is explicitly based on the localised side of the transition. Our subsquent cal- 
culations of the exact self-energy on a Cayley tree for the GME with a nearest-neighbour 
memory function do, however, predict an Anderson transition in good agreement with 
the exact Cayley tree results. This suggests that a more exact treatment of the analytical 
expansion for the diffusion constant beyond the effective medium approximation might 
predict a localisation-delocalisation transition for d = 3. Such an analysis is currently 
under way as well as numerical simulations in the spirit of those of MacKinnon and 
Kramer [12] of the localisation length and localisation function for the GME with a 
nearest-neighbour memory function. 

Inasmuch as all information regarding the interaction of the electron with the dis- 
ordered environment lies in the memory function, the GME is a particularly simple yet 
powerful tool for studying quantum localisation. Of course, the GME is only as powerful 
as the memory function is exact. For example, with the exact memory function it is likely 
that an effective medium theory for the diffusion coefficient would suffice to describe 
the Anderson transition. In addition, the exact memory function for the Anderson 
problem defines precisely how coherent backscattering gives rise to loss of phase memory 
and the onset of quantum localisation. Hence it is worth considering how this quantity 
can be determined exactly. Zwanzig [2] has outlined a projection operator route to the 
memory function, W,, ( t  - t'). The method is systematic and leads to an exact expansion 
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for W,, ( t  - t’) in even powers of the matrix element V .  The first term is of course the 
nearest-neighbour kernel treated here. The next term is O ( V 2 )  and contains sums and 
products of cosines whose arguments are nearest and next-nearest neighbour energy 
differences. Each successive term in the series contains more distant connections 
between the sites. It is certainly worth exploring the possibility of developing a self- 
consistent analysis of this expansion. 

Finally, we comment that aside from offering a direct route to the mean-square 
displacement, the GME is particularly amenable to the inclusion of phonon interations. 
For an energetically disordered system interating with phonons the exact memory 
function is simply a product of the memory functions for the energy disorder and 
the phonon degrees of freedom. Memory functions for quasiparticle transport in the 
presence of strong linear coupling to phonons are well known [3]. In the nearest- 
neighbour approximation, the analysis developed here can be used as well. Two prob- 
lems that can be investigated with such a memory function are (i) the stabilisation of 
Anderson-localised states [26, 271 at zero temperature by the lattice distortion and (ii) 
the temperature dependence of polaron hopping in a disordered environment. Solution 
to these problems will establish the GME as a versatile tool for treating both coherent 
and incoherent transport in disordered systems. 
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Appendix 

To prove that a non-zero constant co is a solution to equation (3.19) in ID for any 
distribution of the disorder, we proceed as follows. In the limit that s--t 0, equation 
(3.19) becomes 

P(A) dA += - 1 
dcO(cg + 4) - I-, A* + ~ c o ( c o  + 4) - cO’ 

As co+ 0, the RHS of (Al )  may be expanded as 

+ .  . ,). += p(A)dA CO I-, A2 + gcO(cO + 4) + A* + g c o ( c O  + 4) 

Because p(A) is always positive and A 2  + g c O ( c o  + 4) > d c o ( c O  + 4),the following 
inequality holds if p(A) # &(A): 

I-, A* + ~ c o ( c O  + 4) + v c o ( c o  + 4) + A 2  CO + . . . )  +% p(A)dA 

+m p(A) dA < 
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Dropping the higher order terms on the RHS of (A3), we see that for co 4 0 

1 < P(A) +X I-,. A* + q c o ( c o  + 4) - co d c o ( c o  + 4)’ 

On the other hand, as co becomes large, the LHS of (Al) goes to zero as l/co, and the 
RHS of (Al) becomes 

P(A) dA +X 

A’ + 2 - l/co + . . . 
and approaches a constant as co + m. 

In summary, as co 4 0, the LHSOf (Al) is greater than the RHS of (Al), and as co+ x ,  

the LHS Of (Al) is less than the RHS Of  (Al). Therefore, there exists a value of co between 
zero and for which (Al) will be satisfied. 
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